人们利用红外传感技术开发了许多应用,例如热成像、人体探测以及夜视等。对于红外能量的量化,使用户能够确定目标的温度以及热行为。
红外热传感和成像仪实现了被动、非侵入式的物体表面温度测量,并能够绘制其温度分布图谱。随着物体表面温度的升高,其辐射光谱的强度也会相应增强。这使我们可以通过远程测量人体或目标物体发射出的能量来确定其温度。红外探测器主要分为两类——红外光子探测器和红外热探测器。
红外光子探测器
红外光子探测器利用材料和电子间的相互作用,吸收被测物体表面发出的红外辐射。通过吸收电子产生的电能分布变化,输出红外探测信号。红外光子探测器每个单元对入射辐射能量的吸收具有波长选择性。红外光子探测器具有完美的信噪比和快速响应性能。但是,红外光子探测器的缺点是需要对其进行低温冷却。而冷却要求,是基于半导体光子探测器的红外系统获得广泛应用的主要障碍。因为这使得光子探测器红外系统变得庞大、笨重、昂贵,而且使用不便。
红外热探测器
一直以来,高成本问题严重限制了消费类市场红外系统的发展。红外热探测器优势包括宽广的波长响应范围、无需冷却、高温稳定性、高信噪比以及较低的成本。红外热探测器主要分为热释电、热电堆和微测辐射热计。(注:本文暂不介绍微测辐射热计,请参考:非制冷红外焦平面探测器及其技术发展动态)
红外热释电传感器
热释电材料吸收热辐射,在晶体材料间产生静态电压信号。但是,热释电材料在持续的红外辐射下,其输出的静态电压信号会减弱,需要对其进行周期性的刷新。热释电探测器可以实现大规模批量生产。它们凭借防盗系统和自动照明开关等应用,在消费类市场逐渐找到了切入口。热释电探测器也被应用于高性能气体分析、火焰探测器等科学仪器。另一方面,对于静态温度测量应用,热释电探测器仍然相对比较昂贵,需要包含一些机械部件。
红外热电堆传感器
根据塞贝克效应,在两种不同材料的连接处,当它们的温度有差异时,会在这两种材料组成的闭环电路中产生电流。这种现象被广泛应用于热电偶的温度测量。热电堆或热电阵列由许多热敏元件组成,每个热敏元件都是一根由两种不同热敏活性材料组成的细丝。当细丝两端的温度出现差异时,便在细丝两端产生了电压(热张力)。热接点集中在一个非常薄的共同吸收区,而冷节点位于一个周边环绕高热质量的散热片上。
现代半导体技术实现了在几平方毫米内,制造包含数百个热电偶的红外热电堆传感器。这种红外传感器因其微小的尺寸,而具有极高的灵敏度和极快的响应时间,而且由于应用了半导体规模生产和光刻技术,使其成本也较低。
电气设备热管理工程师们,长久以来一直享受着由数字温度传感IC带来的便利。新款集成热电堆红外传感器IC能够提供相同便利的数字温度测量结果,并进一步地降低了产品功耗、尺寸和成本,为其在消费类设备领域创造了市场机遇,例如医疗设备、办公设备以及家用电器等。
本新闻来自于网络